LAN property for sde's with additive fractional noise and continuous time observation

Eulalia Nualart
(Universitat Pompeu Fabra, Barcelona)
joint work with Samy Tindel (Purdue University)

Vlad's 60th birthday, Université du Maine, 7th October, 2015

The Ornstein-Uhlenbeck process

- $d X_{t}=-\theta X_{t} d t+d B_{t}, \quad t \in[0, \tau], \quad \theta>0$.
- B_{t} is a standard Brownian motion.
- Let $\hat{\theta}_{\tau}$ be the MLE of θ from the continuous observation of X in $[0, \tau]$.
- Then, it is well-known

$$
\lim _{\tau \rightarrow \infty} \hat{\theta}_{\tau}=\theta \text { a.s. }
$$

and that

$$
\mathcal{L}\left(\mathbf{P}_{\theta}\right)-\lim _{\tau \rightarrow \infty} \sqrt{\tau}\left(\hat{\theta}_{\tau}-\theta\right)=\mathcal{N}(0,2 \theta) .
$$

- where \mathbf{P}_{θ} is the probability law of the solution in the space $\mathcal{C}\left(\mathbf{R}_{+} ; \mathbf{R}\right)$.

The LAN propety for the Ornstein-Uhlenbeck process

- The parametric statistical model $\left\{\mathbf{P}_{\theta}, \theta \in \Theta\right\}$ satisfies the LAN property at $\theta \in \Theta$ with rate $\sqrt{\tau}$ since for any $u \in \mathbf{R}$, as $\tau \rightarrow \infty$:

$$
\log \left(\frac{d \mathbf{P}_{\theta+\frac{u}{\sqrt{\tau}}}^{\tau}}{d \mathbf{P}_{\theta}^{\tau}}\right) \xrightarrow{\mathcal{L}\left(\mathbf{P}_{\theta}\right)} u \mathcal{N}\left(0, \frac{1}{2 \theta}\right)-\frac{u^{2}}{4 \theta}
$$

where $\mathbf{P}_{\theta}^{\tau}$ is probability law of the solution in the space $\left.\mathcal{C}([0, \tau] ; \mathbf{R})\right)$.

- The local log likelihood ratio is asymptotically normal, with a locally constant covariance matrix and a mean equal to minus one half the variance.

Consequence of the LAN property

- Minimax Theorem : Let $\left(\hat{\theta}_{\tau}\right)_{\tau \geq 0}$ be a family of estimators of the parameter θ. Then

$$
\lim _{\delta \rightarrow 0} \liminf _{\tau \rightarrow \infty} \sup _{\left|\theta^{\prime}-\theta\right|<\delta} \mathbf{E}_{\theta^{\prime}}\left[\tau\left(\hat{\theta}_{\tau}-\theta^{\prime}\right)^{2}\right] \geq 2 \theta
$$

- In particular, the MLE is asymptotic minimax efficient.
- The LAN property is an important tool in order to quantify the identifiability of a system. Started by Le Cam'60. Parallel theory to Cramér-Rao bound.

LAN property for ergodic diffusions

- Consider a non-linear d-dimensional ergodic diffusion

$$
d X_{t}=b\left(X_{t} ; \theta\right) d t+\sigma\left(X_{t}\right) d B_{t}, \quad t \in[0, \tau], \quad \theta \in \Theta \subset \mathbf{R}^{q} .
$$

- Under regularity, ellipticity, and ergodic assumptions, for any $\theta \in \Theta$ and $u \in \mathbf{R}^{q}$, as $\tau \rightarrow \infty$:

$$
\log \left(\frac{d \mathbf{P}_{\theta+\frac{u}{\sqrt{\tau}}}^{\tau}}{d \mathbf{P}_{\theta}^{\tau}}\right) \xrightarrow{\mathcal{L}\left(\mathbf{P}_{\theta}\right)} u^{\mathrm{T}} \mathcal{N}(0, \Gamma(\theta))-\frac{1}{2} u^{\mathrm{T}} \Gamma(\theta) u,
$$

where \bar{X} is the ergodic limit of X, and

$$
\Gamma(\theta)=\mathbf{E}_{\theta}\left[\partial_{\theta} b(\bar{X} ; \theta)^{\mathrm{T}} \sigma^{-1}(\bar{X})^{\mathrm{T}} \sigma^{-1}(\bar{X}) \partial_{\theta} b(\bar{X} ; \theta)\right] .
$$

- Proof : Girsanov's theorem, CLT for martingales and ergodicity.
- Consequence : Minimax theorem :

$$
\lim _{\delta \rightarrow 0} \liminf _{\tau \rightarrow \infty} \sup _{\left|\theta^{\prime}-\theta\right|<\delta} \mathbf{E}_{\theta^{\prime}}\left[\tau\left(\hat{\theta}_{\tau}-\theta^{\prime}\right)^{2}\right] \geq \Gamma(\theta)^{-1}
$$

The fractional Ornstein-Uhlenbeck process

- $X_{t}=-\theta \int_{0}^{t} X_{s} d s+B_{t}, \quad t \in[0, \tau], \quad \theta>0$.
- B_{t} fractional Brownian motion with Hurst parameter $H>1 / 2$.
- \mathbf{P}_{θ} is the probability law of the solution in the space $\mathcal{C}^{\lambda}\left(\mathbf{R}_{+} ; \mathbf{R}\right)$, for any $\lambda<H$.
- Let $\hat{\theta}_{\tau}$ be the MLE of θ from the continuous observation of X in $[0, \tau]$.
- Then, it is well-known

$$
\lim _{\tau \rightarrow \infty} \hat{\theta}_{\tau}=\theta \text { a.s. }
$$

and that

$$
\mathcal{L}\left(\mathbf{P}_{\theta}\right)-\lim _{\tau \rightarrow \infty} \sqrt{\tau}\left(\hat{\theta}_{\tau}-\theta\right)=\mathcal{N}(0,2 \theta) .
$$

- This suggests that the LAN property holds with the same rate $\sqrt{\tau}$.

Ergodic sde's with additive fractional noise

$$
X_{t}=x_{0}+\int_{0}^{t} b\left(X_{s} ; \theta\right) d s+\sum_{j=1}^{d} \sigma_{j} B_{t}^{j}, \quad t \in[0, \tau] .
$$

- $\theta \in \Theta$, where Θ is compactly embedded in \mathbf{R}^{q}.
- ergodicity condition: $\langle b(x ; \theta)-b(y ; \theta), x-y\rangle \leq-\alpha|x-y|^{2}$.
- \hat{b} is the Jacobian matrix $\partial_{\theta} b$.
- assumptions: $\partial_{x} b, \partial_{x x} b, \partial_{x} \hat{b}, \partial_{x x} \hat{b}$ bounded, b, \hat{b} linear growth, \hat{b} Lipschitz in θ and x, and σ invertible.
- The solution converges for $t \rightarrow \infty$ a.s. to a unique stationary process ($\bar{X}_{t}, t \geq 0$).
- $\mathbf{P}_{\theta}^{\tau}$ is the probability laws of the solution in the spaces $\mathcal{C}^{\lambda}\left([0, \tau] ; \mathbf{R}^{d}\right)$, for any $\lambda<H$.

The LAN property

Theorem : For any $\theta \in \Theta$ and $u \in \mathbf{R}^{q}$, as $\tau \rightarrow \infty$,

$$
\log \left(\frac{d \mathbf{P}_{\theta+\frac{u}{\tau \tau}}^{\tau \tau}}{d \mathbf{P}_{\theta}^{\tau}}\right) \xrightarrow{\mathcal{L}\left(\mathbf{P}_{\theta}\right)} u^{\mathrm{T}} \mathcal{N}(0, \Gamma(\theta))-\frac{1}{2} u^{\mathrm{T}} \Gamma(\theta) u,
$$

where the matrix $\Gamma(\theta)$ is defined by

$$
\Gamma(\theta)=\int_{\mathbf{R}_{+}^{2}} \frac{\mathbf{E}_{\theta}\left[\left(\hat{b}\left(\bar{X}_{0} ; \theta\right)-\hat{b}\left(\bar{X}_{r_{1}} ; \theta\right)\right)^{\mathrm{T}}\left(\sigma^{-1}\right)^{\mathrm{T}} \sigma^{-1}\left(\hat{b}\left(\bar{X}_{0} ; \theta\right)-\hat{b}\left(\bar{X}_{r_{2}} ; \theta\right)\right)\right]}{r_{1}^{1 / 2+H} r_{2}^{1 / 2+H}} d r_{1} d r_{2} .
$$

Remark : The efficiency of the MLE in the fractional Ornstein-Uhlenbeck case remains open....

Steps of the proof of the LAN property

- Use the representation of the fBm given in Hairer'05 (introduced by Mandelbrot and Van Ness'68) which is suitable to get the desired ergodic properties.
- Apply Girsanov's theorem for the fBm following Moret and Nualart'02.
- Handle the singularities popping out the fractional derivatives in the Girsanov exponent.
- Get ergodic results in Hölder type norms for our process X.
- In order to apply a CLT for Brownian martingales, we use Malliavin calculus techniques : derive concentration properties for the Girsanov exponents by means of a Poincaré type inequality (Üstunel'95), which needs to conviniently upper bound some Malliavin derivatives.

Mendelbrot and Van Ness representation of fBm

Let W be a two sided Wiener process, then the following defines a two-sided fBm : for any $t \in \mathbf{R}$:

$$
\begin{aligned}
& B_{t}=c_{H} \int_{\mathbf{R}_{-}}(-r)^{H-1 / 2}\left[d W_{t+r}-d W_{r}\right] \\
= & c_{H}\left\{\int_{-\infty}^{0}\left[(-(r-t))^{H-1 / 2}-(-r)^{H-1 / 2}\right] d W_{r}-\int_{0}^{t}(-(r-t))^{H-1 / 2} d W_{r}\right\} .
\end{aligned}
$$

Abstract Wiener space : $(\mathcal{B}, \overline{\mathcal{H}}, \mathbf{P})$, where

$$
\mathcal{B}=\left\{f \in \mathcal{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right) ; \frac{\left|f_{t}\right|}{1+|t|}<\infty\right\}
$$

\mathbf{P} is the law of our fBm , and h is an element of the Cameron-Martin space $\overline{\mathcal{H}}$ iff there exists an element X_{h} in the first chaos such that

$$
h_{t}=\mathbf{E}\left[B_{t} X_{h}\right], \quad \text { and } \quad\|h\|_{\overline{\mathcal{H}}}=\left\|X_{h}\right\|_{L^{2}(\Omega)}
$$

Properties of the SDE

- Proposition : There exists a unique continuous pathwise solution on any arbitrary interval $[0, \tau]$ such that :
- The map $X:\left(x_{0}, B\right) \in \mathbf{R}^{d} \times \mathcal{C}\left([0, \tau] ; \mathbf{R}^{d}\right) \rightarrow \mathcal{C}\left([0, \tau] ; \mathbf{R}^{d}\right)$ is locally Lipschitz continuous.
- For any $\theta \in \Theta, p \geq 1$, and $s, t \geq 0$,

$$
\mathbf{E}\left[\left|X_{t}\right|^{p}\right] \leq c_{p}, \quad \text { and } \quad \mathbf{E}\left[\left|\delta X_{s t}\right|^{p}\right] \leq k_{p}|t-s|^{p H},
$$

where δ denotes the increment.

- For all $\varepsilon \in(0, H)$ there exists a random variable $Z_{\varepsilon} \in \cap_{p \geq 1} L^{p}(\Omega)$ such that a.s.

$$
\left|X_{t}\right| \leq Z_{\varepsilon}(1+t)^{2 \varepsilon}, \quad \text { and } \quad\left|\delta X_{s t}\right| \leq Z_{\varepsilon}(1+t)^{2 \varepsilon}|t-s|^{H-\varepsilon},
$$

uniformly for $0 \leq s \leq t$.

Ergodic properties of the SDE

- Garrido-Atienza, Kloeden and Neuenkirch'09 :
- Shift operators $\theta_{t}: \Omega \rightarrow \Omega: \theta_{t} \omega(\cdot)=\omega(\cdot+t)-\omega(t), \quad t \in \mathbb{R}, \quad \omega \in \Omega$.
- The shifted process $\left(B_{s}\left(\theta_{t} \cdot\right)\right)_{s \in \mathbb{R}}$ is still a d-dimensional fractional Brownian motion and for any integrable random variable $F: \Omega \rightarrow \mathbb{R}$

$$
\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} F\left(\theta_{t}(\omega)\right) d t=\mathbf{E}[F]
$$

for P-almost all $\omega \in \Omega$.

- Theorem : There exists a random variable $\bar{X}: \Omega \rightarrow \mathbb{R}^{d}$ such that

$$
\lim _{t \rightarrow \infty}\left|X_{t}(\omega)-\bar{X}\left(\theta_{t} \omega\right)\right|=0
$$

for \mathbf{P}-almost all $\omega \in \Omega$. Moreover, we have $\mathbf{E}\left[|\bar{X}|^{p}\right]<\infty$ for all $p \geq 1$.

Ergodic properties of the SDE

- Theorem : For any $\theta \in \Theta$ and any $f \in \mathcal{C}^{1}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ such that

$$
|f(x)|+\left|\partial_{x} f(x)\right| \leq c\left(1+|x|^{N}\right), \quad x \in \mathbf{R}^{d},
$$

we have

$$
\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} f\left(X_{t}\right) d t=\mathbf{E}[f(\bar{X})], \quad \text { P-a.s. }
$$

- Proposition : Let $\alpha \in(0, H)$. There exists a random variable Z admitting moments of any order such that for all $0 \leq s \leq t$

$$
\left|X_{t}-\bar{X}_{t}\right| \leq Z e^{-c s} \quad \text { and } \quad\left|\delta[X-\bar{X}]_{s t}\right| \leq Z e^{-c s}(t-s)^{\alpha} .
$$

Operator that transforms W into B

Proposition : For $w \in \mathcal{C}_{c}^{\infty}(\mathbf{R})$ and $H \in(0,1)$, set

$$
\left[K_{H} w\right]_{t}=c_{H} \int_{\mathbf{R}_{-}}(-r)^{H-1 / 2}\left[\dot{w}_{t+r}-\dot{w}_{r}\right] d r .
$$

Then : (i) There exists a constant c_{H} such that

$$
\left[K_{H} w\right]_{t}= \begin{cases}-c_{H}\left(\left[l_{+}^{H-1 / 2} w\right]_{t}-\left[l_{+}^{H-1 / 2} w\right]_{0}\right), & \text { for } H>\frac{1}{2} \\ -c_{H}\left(\left[D_{+}^{1 / 2-H} w\right]_{t}-\left[D_{+}^{1 / 2-H} w\right]_{0}\right), & \text { for } H<\frac{1}{2},\end{cases}
$$

where

$$
\left[D_{+}^{\alpha} \varphi\right]_{t}=c_{\alpha} \int_{\mathbf{R}_{+}} \frac{\varphi_{t}-\varphi_{t-r}}{r^{1+\alpha}} d r, \quad \text { and } \quad\left[l_{+}^{\alpha} \varphi\right]_{t}=\tilde{c}_{\alpha} \int_{\mathbf{R}_{+}} \varphi_{t-r} r^{\alpha-1} d r .
$$

(ii) For $H>1 / 2, K_{H}$ can be extended as an isometry from $L^{2}(\mathbf{R})$ to $I_{+}^{H-1 / 2}\left(L^{2}(\mathbf{R})\right)$.
(iii) There exists a constant c_{H} such that $K_{H}^{-1}=C_{H} K_{1-H}$.

Girsanov's transformation

Proposition : For a given $\theta \in \Theta$, onsider the d-dimensional process

$$
Q_{t}=\int_{0}^{t} \sigma^{-1} b\left(X_{s} ; \theta\right) d s+B_{t}
$$

Then Q is a d-dimensional fractional Brownian motion under the probability $\tilde{\mathbf{P}}_{\theta}$ defined by $\frac{d \tilde{\mathbf{P}}_{\theta}}{d \mathbf{P}_{\theta}}{ }_{[0, \tau]}=e^{-L}$, with

$$
L=\int_{0}^{\tau}\left\langle\sigma^{-1}\left[D_{+}^{H-1 / 2} b(X ; \theta)\right] u, d W_{u}\right\rangle+\frac{1}{2} \int_{0}^{\tau}\left|\sigma^{-1}\left[D_{+}^{H-1 / 2} b(X ; \theta)\right] u\right|^{2} d u .
$$

Proof : show that $D_{+}^{H-1 / 2} b(X ; \theta)$ is well defined on $[0, \tau]$, and Novikov's condition : there exists $\lambda>0$ such that

$$
\sup _{t \in[0, \tau]} \mathbf{E}_{\theta}\left[\exp \left(\lambda \int_{0}^{t}\left|\sigma^{-1}\left[D_{+}^{H-1 / 2} b(X ; \theta)\right]_{s}\right|^{2} d s\right)\right]<\infty .
$$

Proof of the LAN property

- Step 1 : Apply Girsanov's theorem. Fix $\theta \in \Theta$, and set $\theta_{\tau}=\theta+\tau^{-1 / 2} u$. Then

$$
\begin{aligned}
\log \left(\frac{d \mathbf{P}_{\theta_{\tau}}^{\tau}}{d \mathbf{P}_{\theta}^{\tau}}\right)=- & \int_{0}^{\tau}\left\langle\sigma^{-1}\left(\left[D_{+}^{H-1 / 2} b\left(X ; \theta_{\tau}\right)\right]_{t}-\left[D_{+}^{H-1 / 2} b(X ; \theta)\right]_{t}\right), d W_{t}\right\rangle \\
& -\frac{1}{2} \int_{0}^{\tau}\left|\sigma^{-1}\left(\left[D_{+}^{H-1 / 2} b\left(X ; \theta_{\tau}\right)\right]_{t}-\left[D_{+}^{H-1 / 2} b(X ; \theta)\right]_{t}\right)\right|^{2} d t .
\end{aligned}
$$

- Step 2 : Linearize this relation : add and substract the d-dimensional vector

$$
\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t}\left(\theta_{\tau}-\theta\right)=\frac{1}{\sqrt{\tau}}\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t},
$$

where $\hat{b}=\partial_{\theta} b$.

Step 2 : linearization

$$
\log \left(\frac{d \mathbf{P}_{\theta_{\tau}}^{\tau}}{d \mathbf{P}_{\theta}^{\tau}}\right)=l_{1}-l_{2}-\frac{1}{2} l_{3}-l_{4}
$$

where

$$
\begin{aligned}
I_{1}= & \frac{1}{\sqrt{\tau}} \int_{0}^{\tau}\left\langle\sigma^{-1}\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t} u, d W_{t}\right\rangle-\frac{1}{2 \tau} \int_{0}^{\tau}\left|\sigma^{-1}\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t} u\right|^{2} d t \\
I_{2}= & \int_{0}^{\tau}\left\langle\sigma^{-1}\left(\left[D_{+}^{H-1 / 2} b\left(X ; \theta_{\tau}\right)\right]_{t}-\left[D_{+}^{H-1 / 2} b(X ; \theta)\right]_{t}-\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t}\left(\theta_{\tau}-\theta\right)\right), d W_{t}\right\rangle \\
I_{3}= & \int_{0}^{\tau}\left|\sigma^{-1}\left(\left[D_{+}^{H-1 / 2} b\left(X ; \theta_{\tau}\right)\right]_{t}-\left[D_{+}^{H-1 / 2} b(X ; \theta)\right]_{t}-\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t}\left(\theta_{\tau}-\theta\right)\right)\right|^{2} d t \\
I_{4}= & \int_{0}^{\tau}\left\langle\sigma ^ { - 1 } \left(\left[D_{+}^{H-1 / 2} b\left(X ; \theta_{\tau}\right)\right]_{t}-\left[D_{+}^{H-1 / 2} b(X ; \theta)\right]_{t}\right.\right. \\
& \left.\left.\quad-\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t}\left(\theta_{\tau}-\theta\right)\right), \sigma^{-1}\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t}\left(\theta_{\tau}-\theta\right)\right\rangle d t .
\end{aligned}
$$

Remaining steps of the proof

- Step 3 : Main contribution to our log-likelihood : we show that as $\tau \rightarrow \infty$

$$
\frac{1}{\tau} \int_{0}^{\tau}\left|\sigma^{-1}\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t} u\right|^{2} d t \xrightarrow{\mathbf{P}_{\theta}} u^{\mathrm{T}} \Gamma(\theta) u .
$$

- Together with multivariate central limit theorem for Brownian martingales implies that as $\tau \rightarrow \infty$

$$
I_{1} \xrightarrow{\mathcal{L}\left(\mathbf{P}_{\theta}\right)} u^{\mathrm{T}} \mathcal{N}(0, \Gamma(\theta))-\frac{1}{2} u^{\mathrm{T}} \Gamma(\theta) u .
$$

- Step 4 : Negligible contributions: We show that the terms I_{2}, I_{3} and I_{4} converge to zero in \mathbf{P}_{θ}-probability as $\tau \rightarrow \infty$.
- For I_{3} apply Taylor's expansion and some computations, I_{3} is the quadratic variation of the martingale I_{2}, and by Cauchy-Schwarz inequality, I_{4} is bounded by I_{3}.

Proof of Step 3

Step 3a: We have that

$$
\frac{1}{\tau} \int_{0}^{\tau}\left|\sigma^{-1}\left[D_{+}^{H-1 / 2} \hat{b}(X ; \theta)\right]_{t} u\right|^{2} d t \equiv \frac{1}{\tau} J_{\tau}(X)=\frac{1}{\tau} \int_{0}^{\tau}\left|\sigma^{-1} N_{t}(X)\right|^{2} d t
$$

where

$$
\begin{aligned}
N_{t}(X) & =\int_{\mathbf{R}_{+}} \frac{\left(\hat{b}\left(X_{t} ; \theta\right)-\hat{b}\left(X_{t-r} ; \theta\right)\right) u}{r^{H+1 / 2}} d r=N_{1, t}(X)+N_{2, t}(X) \\
& =\int_{0}^{t} \frac{\left(\hat{b}\left(X_{t} ; \theta\right)-\hat{b}\left(X_{t-r} ; \theta\right)\right) u}{r^{H+1 / 2}} d r+\int_{t}^{\infty} \frac{\left(\hat{b}\left(X_{t} ; \theta\right)-\hat{b}\left(x_{0} ; \theta\right)\right) u}{r^{H+1 / 2}} d r
\end{aligned}
$$

where we have set $X_{t}=x_{0}$ for all $t \leq 0$.

We denote by $J_{\tau}(\bar{X}), N_{t}(\bar{X}), N_{1, t}(\bar{X}), N_{2, t}(\bar{X})$ the same quantities with X replaced by \bar{X}.

Proof of Step 3

Step 3b: We show that

- $N_{t}(X)-N_{t}(\bar{X})$ is of order $t^{-\eta} Z$ with $\eta>0$ and $Z \in \cap_{p \geq 1} L^{p}(\Omega)$.
- Hence $J_{\tau}(X)-J_{\tau}(\bar{X})$ is of order $\tau^{1-2 \eta}$, which is a negligible term on the scale τ.
- This allows us to consider the limiting behavior of $J_{\tau}(\bar{X})$ instead of $J_{\tau}(X)$.

Proof of Step 3

Step 3c: This step is devoted to reduce our computations to an evaluation for the expected value.

- We show that

$$
\left.\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \mathbf{E}_{\theta}\left[\mid J_{\tau}(X)-\mathbf{E}_{\theta}\left[J_{\tau}(X)\right]\right]\right]=0
$$

- Poincaré type inequality : Let $F: \mathcal{B} \rightarrow \mathbf{R}$ be a functional in $\mathbb{D}^{1,2}$. Then,

$$
\mathrm{E}[|F-\mathbf{E}[F]|] \leq \frac{\pi}{2} \mathrm{E}\left[\|D F\|_{\overline{\mathcal{H}}}\right]
$$

- This reduces to show that

$$
\lim _{\tau \rightarrow \infty} \frac{\mathbf{E}_{\theta}\left[\left\|D J_{\tau}(X)\right\|_{\overline{\mathcal{H}}}\right]}{\tau}=0
$$

Proof of Step 3

Proposition :For all $t>0, X_{t}$ belongs to $\mathbb{D}^{1,2}$, and the Malliavin derivative satisfies that

$$
\left\|D X_{t}\right\|_{\overline{\mathcal{H}}} \leq c \exp \left(-\frac{\alpha t}{2}\right)
$$

uniformly in $t \in \mathbf{R}_{+}$. Moreover, for $0 \leq u \leq v$,

$$
\left\|D\left(\delta X_{u v}\right)\right\|_{\overline{\mathcal{H}}} \leq c_{1} \exp \left(-\frac{\alpha u}{2}\right)(v-u)^{H / 2}
$$

uniformly in u and v.
Idea of proof : Derive contraction properties of the map $h \rightarrow X^{h}, h \in \overline{\mathcal{H}}$, where X^{h} is the solution to our SDE driven by $B+h$:

$$
\left|X_{t}^{h}-X_{t}\right| \leq c \exp \left(-\frac{\alpha t}{2}\right)\|h\|_{\overline{\mathcal{H}}}
$$

uniformly in $t \in \mathbf{R}_{+}$.

Proof of Step 3

Step 3d: We are now reduced to the analysis of the quantity $\mathbf{E}_{\theta}\left[J_{\tau}(\bar{X})\right]$.

- This is equal to $u^{\mathrm{T}} \Psi u$ where Ψ equals the matrix

$$
\int_{0}^{\tau} d t \int_{\mathbf{R}_{+}^{2}} \frac{\mathbf{E}_{\theta}\left[\left(\hat{b}\left(\bar{Y}_{t} ; \theta\right)-\hat{b}\left(\bar{Y}_{t-r_{1}} ; \theta\right)\right)^{\mathrm{T}}\left(\sigma^{-1}\right)^{\mathrm{T}} \sigma^{-1}\left(\hat{b}\left(\bar{Y}_{t} ; \theta\right)-\hat{b}\left(\bar{Y}_{t-r_{2}} ; \theta\right)\right)\right]}{r_{1}^{1 / 2+H} r_{2}^{1 / 2+H}} d r_{1} d r_{2}
$$

- By stationarity of \bar{Y}, the expected value does not depend on t and

$$
\left|\mathbf{E}_{\theta}\left[\left(\hat{b}\left(\bar{Y}_{0} ; \theta\right)-\hat{b}\left(\bar{Y}_{r_{1}} ; \theta\right)\right)^{\mathrm{T}}\left(\sigma^{-1}\right)^{\mathrm{T}} \sigma^{-1}\left(\hat{b}\left(\bar{Y}_{0} ; \theta\right)-\hat{b}\left(\bar{Y}_{r_{2}} ; \theta\right)\right)\right]\right| \lesssim\left(r_{1}^{H} \wedge 1\right)\left(r_{2}^{H} \wedge 1\right)
$$

- We obtain that Ψ is a convergent integral and

$$
\mathbf{E}_{\theta}\left[J_{\tau}(\bar{Y})\right]=\tau u^{\mathrm{T}} \Gamma(\theta) u .
$$

BON ANNIVERSAIRE VLAD !!!!

