LAN property for sde's with additive fractional noise and continuous time observation

Eulalia Nualart (Universitat Pompeu Fabra, Barcelona)

joint work with Samy Tindel (Purdue University)

Vlad's 60th birthday, Université du Maine, 7th October, 2015

7th October, 2015 1/24

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The Ornstein-Uhlenbeck process

- $dX_t = -\theta X_t dt + dB_t$, $t \in [0, \tau]$, $\theta > 0$.
- *B_t* is a standard Brownian motion.
- Let $\hat{\theta}_{\tau}$ be the MLE of θ from the continuous observation of X in $[0, \tau]$.
- Then, it is well-known

$$\lim_{ au o \infty} \hat{ heta}_{ au} = heta$$
 a.s.

and that

$$\mathcal{L}(\mathbf{P}_{ heta}) - \lim_{ au
ightarrow \infty} \sqrt{ au}(\hat{ heta}_{ au} - heta) = \mathcal{N}(\mathbf{0}, \mathbf{2} heta).$$

• where \mathbf{P}_{θ} is the probability law of the solution in the space $\mathcal{C}(\mathbf{R}_+; \mathbf{R})$.

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 2/24

The parametric statistical model {P_θ, θ ∈ Θ} satisfies the LAN property at θ ∈ Θ with rate √τ since for any u ∈ R, as τ → ∞ :

$$\log\left(\frac{d\mathbf{P}_{\theta+\frac{u}{\sqrt{\tau}}}^{\tau}}{d\mathbf{P}_{\theta}^{\tau}}\right) \xrightarrow{\mathcal{L}(\mathbf{P}_{\theta})} u\mathcal{N}\left(0,\frac{1}{2\theta}\right) - \frac{u^{2}}{4\theta},$$

where $\mathbf{P}_{\theta}^{\tau}$ is probability law of the solution in the space $\mathcal{C}([0, \tau]; \mathbf{R}))$.

 The local log likelihood ratio is asymptotically normal, with a locally constant covariance matrix and a mean equal to minus one half the variance.

Consequence of the LAN property

Minimax Theorem : Let (θ
τ){τ≥0} be a family of estimators of the parameter θ. Then

$$\lim_{\delta \to 0} \liminf_{\tau \to \infty} \sup_{|\theta' - \theta| < \delta} \mathbf{E}_{\theta'} \left[\tau (\hat{\theta}_{\tau} - \theta')^2 \right] \ge 2\theta.$$

- In particular, the MLE is asymptotic minimax efficient.
- The LAN property is an important tool in order to quantify the identifiability of a system. Started by Le Cam'60. Parallel theory to Cramér-Rao bound.

LAN property for ergodic diffusions

• Consider a non-linear *d*-dimensional ergodic diffusion

$$dX_t = b(X_t; \theta)dt + \sigma(X_t)dB_t, \quad t \in [0, \tau], \quad \theta \in \Theta \subset \mathbf{R}^q.$$

• Under regularity, ellipticity, and ergodic assumptions, for any $\theta \in \Theta$ and $u \in \mathbf{R}^q$, as $\tau \to \infty$:

$$\log\left(\frac{d\mathbf{P}_{\theta+\frac{u}{\sqrt{\tau}}}^{\tau}}{d\mathbf{P}_{\theta}^{\tau}}\right) \xrightarrow{\mathcal{L}(\mathbf{P}_{\theta})} u^{\mathrm{T}}\mathcal{N}\left(0,\Gamma(\theta)\right) - \frac{1}{2}u^{\mathrm{T}}\Gamma(\theta)u,$$

where \overline{X} is the ergodic limit of X, and

$$\Gamma(\theta) = \mathbf{E}_{\theta}[\partial_{\theta} b(\overline{X}; \theta)^{\mathrm{T}} \sigma^{-1}(\overline{X})^{\mathrm{T}} \sigma^{-1}(\overline{X}) \partial_{\theta} b(\overline{X}; \theta)].$$

- Proof : Girsanov's theorem, CLT for martingales and ergodicity.
- Consequence : Minimax theorem :

$$\lim_{\delta \to 0} \liminf_{\tau \to \infty} \sup_{|\theta' - \theta| < \delta} \mathbf{E}_{\theta'} \left[\tau (\hat{\theta}_{\tau} - \theta')^2 \right] \geq \Gamma(\theta)^{-1}.$$

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 5/24

The fractional Ornstein-Uhlenbeck process

•
$$X_t = -\theta \int_0^t X_s \, ds + B_t, \qquad t \in [0, \tau], \quad \theta > 0.$$

- B_t fractional Brownian motion with Hurst parameter H > 1/2.
- P_θ is the probability law of the solution in the space C^λ(R₊; R), for any λ < H.
- Let $\hat{\theta}_{\tau}$ be the MLE of θ from the continuous observation of X in $[0, \tau]$.
- Then, it is well-known

$$\lim_{\tau \to \infty} \hat{\theta}_{\tau} = \theta \quad \text{a.s.}$$

and that

$$\mathcal{L}(\mathbf{P}_{ heta}) - \lim_{ au
ightarrow \infty} \sqrt{ au}(\hat{ heta}_{ au} - heta) = \mathcal{N}(\mathbf{0}, \mathbf{2} heta).$$

• This suggests that the LAN property holds with the same rate $\sqrt{\tau}$.

Ergodic sde's with additive fractional noise

$$X_t = x_0 + \int_0^t b(X_s; \theta) \, ds + \sum_{j=1}^d \sigma_j B_t^j, \qquad t \in [0, \tau].$$

- $\theta \in \Theta$, where Θ is compactly embedded in \mathbf{R}^q .
- ergodicity condition : $\langle b(x; \theta) b(y; \theta), x y \rangle \leq -\alpha |x y|^2$.
- \hat{b} is the Jacobian matrix $\partial_{\theta} b$.
- assumptions : ∂_xb, ∂_{xx}b, ∂_xb̂, ∂_{xx}b̂ bounded, b, b̂ linear growth, b̂ Lipschitz in θ and x, and σ invertible.
- The solution converges for $t \to \infty$ a.s. to a unique stationary process $(\overline{X}_t, t \ge 0)$.
- P^τ_θ is the probability laws of the solution in the spaces C^λ([0, τ]; R^d), for any λ < H.

The LAN property

Theorem : For any $\theta \in \Theta$ and $u \in \mathbf{R}^q$, as $\tau \to \infty$,

$$\log\left(\frac{d\mathbf{P}_{\theta+\frac{u}{\sqrt{\tau}}}^{\tau}}{d\mathbf{P}_{\theta}^{\tau}}\right) \xrightarrow{\mathcal{L}(\mathbf{P}_{\theta})} u^{\mathrm{T}}\mathcal{N}(0,\Gamma(\theta)) - \frac{1}{2}u^{\mathrm{T}}\Gamma(\theta)u,$$

where the matrix $\Gamma(\theta)$ is defined by

$$\Gamma(\theta) = \int_{\mathbf{R}^{2}_{+}} \frac{\mathbf{E}_{\theta}[(\hat{b}(\overline{X}_{0};\theta) - \hat{b}(\overline{X}_{r_{1}};\theta))^{\mathrm{T}}(\sigma^{-1})^{\mathrm{T}}\sigma^{-1}(\hat{b}(\overline{X}_{0};\theta) - \hat{b}(\overline{X}_{r_{2}};\theta))]}{r_{1}^{1/2+H}r_{2}^{1/2+H}} dr_{1}dr_{2}.$$

Remark : The efficiency of the MLE in the fractional Ornstein-Uhlenbeck case remains open....

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 8/24

Steps of the proof of the LAN property

- Use the representation of the fBm given in Hairer'05 (introduced by Mandelbrot and Van Ness'68) which is suitable to get the desired ergodic properties.
- Apply Girsanov's theorem for the fBm following Moret and Nualart'02.
- Handle the singularities popping out the fractional derivatives in the Girsanov exponent.
- Get ergodic results in Hölder type norms for our process X.
- In order to apply a CLT for Brownian martingales, we use Malliavin calculus techniques : derive concentration properties for the Girsanov exponents by means of a Poincaré type inequality (Üstunel'95), which needs to conviniently upper bound some Malliavin derivatives.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Mendelbrot and Van Ness representation of fBm

Let *W* be a two sided Wiener process, then the following defines a two-sided fBm : for any $t \in \mathbf{R}$:

$$B_{t} = c_{H} \int_{\mathbf{R}_{-}} (-r)^{H-1/2} \left[dW_{t+r} - dW_{r} \right]$$

= $c_{H} \left\{ \int_{-\infty}^{0} \left[(-(r-t))^{H-1/2} - (-r)^{H-1/2} \right] dW_{r} - \int_{0}^{t} (-(r-t))^{H-1/2} dW_{r} \right\}.$

<u>Abstract Wiener space :</u> $(\mathcal{B}, \overline{\mathcal{H}}, \mathbf{P})$, where

$$\mathcal{B} = \left\{ f \in \mathcal{C}(\mathbf{R}; \mathbf{R}^d); \ \frac{|f_t|}{1+|t|} < \infty \right\},\$$

P is the law of our fBm, and *h* is an element of the Cameron-Martin space $\overline{\mathcal{H}}$ iff there exists an element X_h in the first chaos such that

$$h_t = \mathbf{E}[B_t X_h], \text{ and } \|h\|_{\tilde{\mathcal{H}}} = \|X_h\|_{L^2(\Omega)}.$$

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 10/24

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Properties of the SDE

- Proposition : There exists a unique continuous pathwise solution on any arbitrary interval [0, τ] such that :
- The map $X : (x_0, B) \in \mathbf{R}^d \times \mathcal{C}([0, \tau]; \mathbf{R}^d) \to \mathcal{C}([0, \tau]; \mathbf{R}^d)$ is locally Lipschitz continuous.

• For any
$$\theta \in \Theta$$
, $p \ge 1$, and $s, t \ge 0$,

$$\mathbf{E}\left[\left|X_{t}\right|^{p}\right] \leq c_{p}, \quad \text{and} \quad \mathbf{E}\left[\left|\delta X_{st}\right|^{p}\right] \leq k_{p}\left|t-s\right|^{pH},$$

where δ denotes the increment.

For all ε ∈ (0, H) there exists a random variable Z_ε ∈ ∩_{p≥1}L^p(Ω) such that a.s.

$$|X_t| \leq Z_{\varepsilon} (1+t)^{2\varepsilon}$$
, and $|\delta X_{st}| \leq Z_{\varepsilon} (1+t)^{2\varepsilon} |t-s|^{H-\varepsilon}$,

uniformly for $0 \le s \le t$.

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 11/24

Ergodic properties of the SDE

- Garrido-Atienza, Kloeden and Neuenkirch'09 :
- Shift operators $\theta_t : \Omega \to \Omega : \theta_t \omega(\cdot) = \omega(\cdot + t) \omega(t), \quad t \in \mathbb{R}, \quad \omega \in \Omega.$
- The shifted process (B_s(θ_t·))_{s∈ℝ} is still a *d*-dimensional fractional Brownian motion and for any integrable random variable F : Ω → ℝ

$$\lim_{\tau\to\infty}\frac{1}{\tau}\int_0^{\tau} F(\theta_t(\omega)) \, dt = \mathbf{E}[F],$$

for **P**-almost all $\omega \in \Omega$.

• **Theorem :** There exists a random variable $\overline{X} : \Omega \to \mathbb{R}^d$ such that

$$\lim_{t\to\infty} |X_t(\omega) - \overline{X}(\theta_t\omega)| = 0$$

for **P**-almost all $\omega \in \Omega$. Moreover, we have $\mathbf{E}[|\overline{X}|^{p}] < \infty$ for all $p \ge 1$.

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 12/24

Ergodic properties of the SDE

• **Theorem :** For any $\theta \in \Theta$ and any $f \in C^1(\mathbb{R}^d; \mathbb{R})$ such that

$$|f(x)|+|\partial_x f(x)|\leq c\left(1+|x|^N
ight),\qquad x\in \mathbf{R}^d,$$

we have

$$\lim_{\tau\to\infty}\frac{1}{\tau}\int_0^{\tau}f(X_t)\,dt=\mathbf{E}[f(\overline{X})],\qquad\mathbf{P}\text{-}a.s.$$

• **Proposition :** Let $\alpha \in (0, H)$. There exists a random variable *Z* admitting moments of any order such that for all $0 \le s \le t$

$$\left|X_t - \overline{X}_t\right| \leq Z \, e^{-cs} \quad \text{and} \quad \left|\delta \left[X - \overline{X}\right]_{st}\right| \leq Z \, e^{-cs} (t-s)^{lpha}.$$

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 13/24

Proposition : For $w \in C^{\infty}_{c}(\mathbf{R})$ and $H \in (0, 1)$, set

$$[K_H w]_t = c_H \int_{\mathbf{R}_-} (-r)^{H-1/2} [\dot{w}_{t+r} - \dot{w}_r] dr.$$

Then : (i) There exists a constant c_H such that

$$\left[\mathcal{K}_{H} w \right]_{t} = \begin{cases} -c_{H} \left(\left[I_{+}^{H-1/2} w \right]_{t} - \left[I_{+}^{H-1/2} w \right]_{0} \right), & \text{for } H > \frac{1}{2} \\ -c_{H} \left(\left[D_{+}^{1/2-H} w \right]_{t} - \left[D_{+}^{1/2-H} w \right]_{0} \right), & \text{for } H < \frac{1}{2}, \end{cases}$$

where

$$[D^{\alpha}_{+}\varphi]_{t} = c_{\alpha} \int_{\mathbf{R}_{+}} \frac{\varphi_{t} - \varphi_{t-r}}{r^{1+\alpha}} dr, \quad \text{and} \quad [I^{\alpha}_{+}\varphi]_{t} = \tilde{c}_{\alpha} \int_{\mathbf{R}_{+}} \varphi_{t-r} r^{\alpha-1} dr.$$

(ii) For H > 1/2, K_H can be extended as an isometry from $L^2(\mathbf{R})$ to $I_+^{H-1/2}(L^2(\mathbf{R}))$. (iii) There exists a constant c_H such that $K_H^{-1} = c_H K_{1-H}$.

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 14/24

Girsanov's transformation

Proposition : For a given $\theta \in \Theta$, onsider the *d*-dimensional process

$$Q_t = \int_0^t \sigma^{-1} b(X_s; \theta) \, ds + B_t.$$

Then *Q* is a *d*-dimensional fractional Brownian motion under the probability $\tilde{\mathbf{P}}_{\theta}$ defined by $\frac{d\tilde{\mathbf{P}}_{\theta}}{d\mathbf{P}_{\theta}}|_{[0,\tau]} = e^{-L}$, with

$$L = \int_0^\tau \langle \sigma^{-1} [D_+^{H-1/2} b(X;\theta)]_u, dW_u \rangle + \frac{1}{2} \int_0^\tau |\sigma^{-1} [D_+^{H-1/2} b(X;\theta)]_u|^2 du.$$

Proof : show that $D_{+}^{H-1/2}b(X;\theta)$ is well defined on $[0, \tau]$, and Novikov's condition : there exists $\lambda > 0$ such that

$$\sup_{t\in[0,\tau]}\mathbf{E}_{\theta}\left[\exp\left(\lambda\int_{0}^{t}|\sigma^{-1}[D_{+}^{H-1/2}b(X;\theta)]_{s}|^{2}ds\right)\right]<\infty.$$

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 15/24

Proof of the LAN property

• Step 1 : Apply Girsanov's theorem. Fix $\theta \in \Theta$, and set $\theta_{\tau} = \theta + \tau^{-1/2}u$. Then

$$\log\left(\frac{d\mathbf{P}_{\theta_{\tau}}^{\tau}}{d\mathbf{P}_{\theta}^{\tau}}\right) = -\int_{0}^{\tau} \langle \sigma^{-1}([D_{+}^{H-1/2}b(X;\theta_{\tau})]_{t} - [D_{+}^{H-1/2}b(X;\theta)]_{t}), dW_{t} \rangle \\ - \frac{1}{2} \int_{0}^{\tau} |\sigma^{-1}([D_{+}^{H-1/2}b(X;\theta_{\tau})]_{t} - [D_{+}^{H-1/2}b(X;\theta)]_{t})|^{2} dt.$$

• Step 2 : Linearize this relation : add and substract the *d*-dimensional vector

$$[D_{+}^{H-1/2}\hat{b}(X;\theta)]_{t}(\theta_{\tau}-\theta)=\frac{1}{\sqrt{\tau}}[D_{+}^{H-1/2}\hat{b}(X;\theta)]_{t},$$

where $\hat{b} = \partial_{\theta} b$.

7th October, 2015 16/24

Eulalia Nualart (Universitat Pompeu Fabra)

Step 2 : linearization

$$\log\left(\frac{d\mathbf{P}_{\theta_{\tau}}^{\tau}}{d\mathbf{P}_{\theta}^{\tau}}\right) = l_1 - l_2 - \frac{1}{2}l_3 - l_4,$$

where

$$I_{1} = \frac{1}{\sqrt{\tau}} \int_{0}^{\tau} \langle \sigma^{-1} [D_{+}^{H-1/2} \hat{b}(X;\theta)]_{t} u, dW_{t} \rangle - \frac{1}{2\tau} \int_{0}^{\tau} |\sigma^{-1} [D_{+}^{H-1/2} \hat{b}(X;\theta)]_{t} u|^{2} dt$$

$$I_{2} = \int_{0}^{\tau} \langle \sigma^{-1} ([D_{+}^{H-1/2} b(X;\theta_{\tau})]_{t} - [D_{+}^{H-1/2} b(X;\theta)]_{t} - [D_{+}^{H-1/2} \hat{b}(X;\theta)]_{t} (\theta_{\tau} - \theta)), dW_{t} \rangle$$

$$I_{3} = \int_{0}^{\tau} |\sigma^{-1} ([D_{+}^{H-1/2} b(X;\theta_{\tau})]_{t} - [D_{+}^{H-1/2} b(X;\theta)]_{t} - [D_{+}^{H-1/2} \hat{b}(X;\theta)]_{t} (\theta_{\tau} - \theta))|^{2} dt$$

$$\begin{split} I_4 &= \int_0^\tau \langle \sigma^{-1}([D_+^{H-1/2}b(X;\theta_\tau)]_t - [D_+^{H-1/2}b(X;\theta)]_t \\ &- [D_+^{H-1/2}\hat{b}(X;\theta)]_t(\theta_\tau - \theta)), \sigma^{-1}[D_+^{H-1/2}\hat{b}(X;\theta)]_t(\theta_\tau - \theta)\rangle dt. \end{split}$$

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 17/24

Remaining steps of the proof

• Step 3 : <u>Main contribution</u> to our log-likelihood : we show that as $\tau \to \infty$

$$\frac{1}{\tau}\int_0^{\tau} |\sigma^{-1}[D_+^{H-1/2}\hat{b}(X;\theta)]_t u|^2 dt \xrightarrow{\mathbf{P}_{\theta}} u^{\mathrm{T}} \Gamma(\theta) u.$$

• Together with multivariate central limit theorem for Brownian martingales implies that as $\tau \to \infty$

$$I_1 \xrightarrow{\mathcal{L}(\mathbf{P}_{\theta})} u^{\mathrm{T}} \mathcal{N}(0, \Gamma(\theta)) - \frac{1}{2} u^{\mathrm{T}} \Gamma(\theta) u.$$

- Step 4 : Negligible contributions : We show that the terms l_2 , l_3 and l_4 converge to zero in \mathbf{P}_{θ} -probability as $\tau \to \infty$.
- For *l*₃ apply Taylor's expansion and some computations, *l*₃ is the quadratic variation of the martingale *l*₂, and by Cauchy-Schwarz inequality, *l*₄ is bounded by *l*₃.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Step 3a : We have that

$$\frac{1}{\tau}\int_0^\tau |\sigma^{-1}[D_+^{H-1/2}\hat{b}(X;\theta)]_t u|^2 dt \equiv \frac{1}{\tau}J_\tau(X) = \frac{1}{\tau}\int_0^\tau \left|\sigma^{-1}N_t(X)\right|^2 dt,$$

where

$$\begin{split} N_{t}(X) &= \int_{\mathbf{R}_{+}} \frac{(\hat{b}(X_{t};\theta) - \hat{b}(X_{t-r};\theta))u}{r^{H+1/2}} \, dr = N_{1,t}(X) + N_{2,t}(X) \\ &= \int_{0}^{t} \frac{(\hat{b}(X_{t};\theta) - \hat{b}(X_{t-r};\theta))u}{r^{H+1/2}} \, dr + \int_{t}^{\infty} \frac{(\hat{b}(X_{t};\theta) - \hat{b}(x_{0};\theta))u}{r^{H+1/2}} \, dr \end{split}$$

where we have set $X_t = x_0$ for all $t \le 0$.

We denote by $J_{\tau}(\overline{X})$, $N_t(\overline{X})$, $N_{1,t}(\overline{X})$, $N_{2,t}(\overline{X})$ the same quantities with X replaced by \overline{X} .

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 19/24

Step 3b : We show that

- $N_t(X) N_t(\overline{X})$ is of order $t^{-\eta}Z$ with $\eta > 0$ and $Z \in \bigcap_{p \ge 1} L^p(\Omega)$.
- Hence J_τ(X) − J_τ(X̄) is of order τ^{1−2η}, which is a negligible term on the scale τ.
- This allows us to consider the limiting behavior of J_τ(X) instead of J_τ(X).

Step 3c : This step is devoted to reduce our computations to an evaluation for the expected value.

We show that

$$\lim_{\tau\to\infty}\frac{1}{\tau}\,\mathbf{E}_{\theta}\left[|J_{\tau}(X)-\mathbf{E}_{\theta}[J_{\tau}(X)]|\right]=0,$$

• Poincaré type inequality : Let $F : \mathcal{B} \to \mathbf{R}$ be a functional in $\mathbb{D}^{1,2}$. Then,

$$\mathbf{E}\left[|F - \mathbf{E}[F]|\right] \le \frac{\pi}{2} \mathbf{E}\left[\|DF\|_{\bar{\mathcal{H}}}\right]$$

This reduces to show that

$$\lim_{\tau\to\infty}\frac{\mathbf{E}_{\theta}\left[\|DJ_{\tau}(X)\|_{\bar{\mathcal{H}}}\right]}{\tau}=0.$$

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 21/24

Proposition :For all t > 0, X_t belongs to $\mathbb{D}^{1,2}$, and the Malliavin derivative satisfies that

$$\|DX_t\|_{\bar{\mathcal{H}}} \leq c \exp\left(-\frac{\alpha t}{2}\right),$$

uniformly in $t \in \mathbf{R}_+$. Moreover, for $0 \le u \le v$,

$$\|D(\delta X_{uv})\|_{\tilde{\mathcal{H}}} \leq c_1 \exp\left(-\frac{\alpha u}{2}\right) (v-u)^{H/2},$$

uniformly in u and v.

Idea of proof : Derive contraction properties of the map $h \to X^h$, $h \in \overline{\mathcal{H}}$, where X^h is the solution to our SDE driven by B + h:

$$|X_t^h - X_t| \leq c \exp\left(-rac{lpha t}{2}
ight) \|h\|_{ar{\mathcal{H}}},$$

uniformly in $t \in \mathbf{R}_+$.

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 22/24

Step 3d : We are now reduced to the analysis of the quantity $\mathbf{E}_{\theta}[J_{\tau}(\overline{X})]$.

• This is equal to $u^{T}\Psi u$ where Ψ equals the matrix

$$\int_{0}^{\tau} dt \int_{\mathbf{R}^{2}_{+}} \frac{\mathbf{E}_{\theta}[(\hat{b}(\overline{Y}_{t};\theta) - \hat{b}(\overline{Y}_{t-r_{1}};\theta))^{\mathrm{T}}(\sigma^{-1})^{\mathrm{T}}\sigma^{-1}(\hat{b}(\overline{Y}_{t};\theta) - \hat{b}(\overline{Y}_{t-r_{2}};\theta))]}{r_{1}^{1/2+H}r_{2}^{1/2+H}} dr_{1} dr_{2}$$

- By stationarity of \overline{Y} , the expected value does not depend on t and $|\mathbf{E}_{\theta}[(\hat{b}(\overline{Y}_{0};\theta)-\hat{b}(\overline{Y}_{r_{1}};\theta))^{\mathrm{T}}(\sigma^{-1})^{\mathrm{T}}\sigma^{-1}(\hat{b}(\overline{Y}_{0};\theta)-\hat{b}(\overline{Y}_{r_{2}};\theta))]| \lesssim (r_{1}^{H} \wedge 1)(r_{2}^{H} \wedge 1)$
- We obtain that Ψ is a convergent integral and

$$\mathbf{E}_{\theta}[J_{\tau}(\overline{Y})] = \tau u^{\mathrm{T}} \Gamma(\theta) u.$$

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 23/24

BON ANNIVERSAIRE VLAD !!!!

Eulalia Nualart (Universitat Pompeu Fabra)

7th October, 2015 24/24

<ロ> (四) (四) (三) (三) (三)